Keresés

Új hozzászólás Aktív témák

  • Pug

    veterán

    válasz MaCS_70 #20133 üzenetére

    The question is open to a number of differing interpretations. For instance: number of digits in the arrangements, whether digits can be repeated and whether such arrangements are to be combinations, permutations or distinct permutations.
    Consider limiting “arrangements” to 1 ,2,3,4,5,6,7 or 8 digits.
    Respective combinations are: 8!/(1!)(7!) = 8; 8!/(2!)(6!) = 28; 8!/(3!)(5!) = 56; 8!/(4!)(4!) = 70; 8!/(5!)(3!) = 56; 8!/(6!)(2!) = 28; 8!/(7!)(1!) = 8; 8!/(8!)(0!) =1.
    Total of these combinations = 8+28+56+70+56+28+8+1 = 254.
    Respective distinct permutations are: 8!/(7!) = 8; 8!/(6!) = 56; 8!/(5!) = 336; 8!/(4!) = 1,680; 8!/(3!) = 6,720; 8!(2!) = 20,160; 8!/(1!) = 40,320; 8!/(0!) = 40,320
    Total of these distinct permutations = 8+56+336+1,680+6,720+20,160+40,320 +40,320 =109,608.
    Respective permutations, including those non-distinct with repeating digits, are: 8+(8^2)+(8^3)+(8^4)+(8^5)+(8^6)+(8^7)+(8^8) = 19,173,960.


    minket a vastagon szedett resz erdekel

Új hozzászólás Aktív témák